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Measures of agreement are compared to measures of prediction accuracy within a general context. Differences in appropriate use are
emphasized, and approaches are examined for both numerical and nominal variables. General estimation methods are developed, and
their large-sample properties are compared.
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Measures of agreement and measures of prediction accuracy are both commonly used. They serve different purposes,
so it is important to understand their proper use. It is also important to understand the options for measuring agree-
ment and the options for measuring prediction. This report provides a series of recommendations for their use within
educational assessment and the basis for these recommendations. The report is not comprehensive to the extent that rea-
sonable measures are omitted, including measures that the author has employed in the past. In addition, the methodology
considered here is generally not new, although some new results were needed to address some apparent omissions in
the literature detected in preparation of the report. In the section Measures of Agreement, measurement of agreement
is examined, while measurement of prediction accuracy is examined in the section Measures of Prediction Accuracy.
Estimation is considered in the section Estimation of Measures in terms of estimates, large-sample approximations for
distributions, and approximate confidence intervals. Some concluding remarks are provided in the section Concluding
Remarks. Although many of the arguments required for a general discussion are relatively technical, a number of basic
points can be made prior to consideration of details.

Measures of agreement are symmetrical assessments of whether two or more measurements can be regarded as inter-
changeable. Within educational testing, these measures have often been applied to rating constructed responses, and they
have often involved variables that can assume only a finite number of values. Common practice has often involved proba-
bilities of exact agreement or exact or adjacent agreement (Goodman & Kruskal, 1954) or measures from the kappa family
(Cicchetti & Allison, 1971; Cohen, 1960, 1968; Conger, 1980; Fleiss & Cohen, 1973; Fleiss, Cohen, & Everitt, 1969); how-
ever, related but somewhat different measures based on a different application of proportional reduction of error (Costner,
1965; Goodman & Kruskal, 1954) merit attention. For discrete or continuous variables, agreement can be assessed by use
of intraclass correlation (Fisher, 1934, pp. 199–203). Whatever agreement measures are used, they should be applied to
similar kinds of measurements, such as scores from different human raters randomly selected from a pool or similar
thermometers, for the measures should be plausibly interchangeable.

As is the case for all common measures, except for the probability of exact agreement or the probability of exact or
adjacent agreement, good practice generally involves proportional reduction in error (Costner, 1965), so that a measure of
the discrepancy of the measurements, such as mean absolute difference, is compared to a baseline measure that reflects the
extent to which the individual measurements vary. In the kappa family, the baseline measure is the measure of discrepancy
that would result if the variables under study were independently distributed. In the lambda family for agreement based
on Goodman and Kruskal (1954), the baseline is the average discrepancy of each variable under study compared to the
average discrepancy of each variable compared to an optimally selected constant. The lambda measure for agreement
is smaller than the corresponding kappa measure, except in a few special cases in which the measures both attain their
maximum value of 1.
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The following issue leads to proportional reduction of error as a needed principle. If all raters assign the same score to all
essays being rated, then they agree with each other well simply because no variation in scores exists. As an example of this
basic result leading to a problem in practice, exact agreement can be increased by grouping of variable values, a practice
that may be questionable. For example, consider two methods to ascertain native language. The exact agreement of these
methods is increased by grouping languages together so that, for example, French, Spanish, and Italian are combined into
a category for Romance languages; however, no actual improvement in consistency has been observed.

Both the kappa measures and the lambda measures for agreement are defensible measures given their use of propor-
tional reduction of error; however, the kappa measures are much more familiar to psychometricians than the lambda
measures for agreement. Within kappa measures, a distinction should be made between agreement for nominal variables,
such as native language, and agreement for numerical variables, such as holistic score. For nominal variables, the essential
issue is whether the variables are the same, so that exact agreement and the original kappa measure (Cohen, 1960) are
appropriate. In the case of numerical variables, a reasonable measure of discrepancy, such as mean absolute difference
(Cicchetti & Allison, 1971) or mean squared difference (Cohen, 1968), is larger when the variables differ more. Given
the relationship of quadratically weighted kappa with correlation and intraclass correlation (Fleiss & Cohen, 1973), it is
reasonable to employ this member of the kappa family for numerical variables, unless a good reason exists to use linearly
weighted kappa. No other member of the kappa family appears to be commonly used. For reasons that perhaps reflect the
original discussion of weighted kappa (Cohen, 1968), the literature related to kappa has been confined to variables that
assume only a finite number of values. The discussion in this report makes no such restriction.

Measures of prediction accuracy measure the ability to predict one variable by use of one or more other variables. The
predicted variable and the predicting variables can be numerical measures or nominal variables. No symmetry is involved.
Prediction of a human holistic score by use of computer-generated variables can be considered even though one score is
predicted by many computer-generated variables and the human score has very different measurement properties than
do computer-generated variables. The principle of proportional reduction of error applies again, and mean squared error
remains quite important, given its connection to least squares. In the case of numerical predicted variables and the use of
mean squared error, proportional reduction of error leads to the coefficient of determination (Wright, 1920; Yule, 1897).
Mean absolute error has been considered for measurement of prediction (Haberman, 1996, pp. 397–400); however, its
use has not been common despite a literature concerning the use of least absolute deviations instead of least squares for
linear models (Bloomfield & Steiger, 1983). In the case of nominal dependent variables, probability prediction can be used
to provide flexible selection of measures (Gilula & Haberman, 1995a, 1995b; Haberman, 1982a, 1982b). Of the common
options, the tau measure (Goodman & Kruskal, 1954) has the advantage that it is not 0 if the predicted variable is not
independent of the predictor or predictors. The original lambda measure for prediction (Goodman & Kruskal, 1954) can
be 0 even if the predicted variable is rather strongly related to the predictor or predictor. This problem arises because
this lambda compares conditional and unconditional classification errors, a criterion that is highly insensitive in many
practical situations. As a consequence, it is recommended that the lambda measure for prediction be deprecated, despite
its frequent use.

Owing to the difference in the purposes of measures of agreement and measures of prediction, predictors should not
be evaluated in terms of measures of agreement, and measures of agreement should not be evaluated in terms of measures
of prediction.

Measures of agreement are readily estimated from random samples under very general conditions. Measures of predic-
tion accuracy may be easily estimated from such samples in simple cases, but they are very difficult to estimate in general
cases without model assumptions. It is very important to understand that the assumption of simple random sampling is
not necessarily valid in applications. This issue is especially important in educational testing in survey assessments, cases
in which multiple administrations are treated together, and cases in which multiple prompts are treated together. As is the
case for any estimation problem, failure to account for the sampling procedure employed can result in substantial errors
in evaluation of the accuracy of estimates.

Measures of Agreement

As previously noted, a measure of agreement assesses the extent to which two or more variables can be regarded as inter-
changeable, so that the different measures can be substituted for each other. To begin, let J ≥ 2 be an integer, and let X
be the J-dimensional random vector on a population S with elements Xj, 1 ≤ j ≤ J. If J = 2, then X may sometimes be
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written as (X1, X2), while for J = 3, the notation (X1, X2, X3) may sometimes be used. Measures of agreement have basic
symmetry properties. For example, a measure for (X1, X2) should be the same as a measure for (X2, X1). In general, let
ΩJ be the set of permutations on the set J of positive integers no greater than J, so that ω is in ΩJ if and only if ω is a
function from J onto J. For ω in ΩJ , let Xω denote the J-dimensional random vector with element j equal to Xω(j) for
1 ≤ j ≤ J. For J = 2, ω(1)= 2, and ω(2)= 1, Xω = (X2, X1). A measure of agreement for the random vector X has the sym-
metry property that the measure for X has the same value as the measure for Xω for all permutationsω in ΩJ . For example,
the Xj, 1 ≤ j ≤ J, might be the numerical ratings assigned by J rating systems to a population S of essays, so that, for an
essay s in the population S, Xj(s), 1 ≤ j ≤ J, is the numerical essay rating assigned to s under system j. The variables Xj,
1 ≤ j ≤ J, could also correspond to J thermometers or J procedures for detection of a disease. The case of J = 2 variables
is the most familiar one. In both discussions of estimation and development of the kappa measures, mutually indepen-
dent random vectors Xi, i ≥ 1, are considered with the same distribution as X. The elements of Xi are Xij, 1 ≤ j ≤ J. An
important special case of agreement measurement involves symmetric random vectors. Here X is symmetric if Xω has
the same distribution for all permutations ω in Ω. This case is important in psychometrics in the study of parallel-form
reliability and rater reliability (Lord & Novick, 1968); however, agreement often must be evaluated when distributions
are not symmetric. For example, agreement of two thermometers is still of interest if the thermometers are not perfectly
calibrated.

Discrepancy Functions

A measure of agreement may assess absolute or relative agreement. A general description of measures of agreement may
be based on the notion of discrepancy functions. Here a discrepancy function d is a real convex nonnegative symmetric
on the set R of real numbers such that d(z)= 0 if and only if the real number z is 0. A convexity assumption holds if

d
(

y
)
− d (x)

y − x
≤

d (z) − d (x)
z − x

for all real numbers x, y, and z such that x< y< z. The symmetry condition holds if d(z)= d(− z) for all real z. The
discrepancy of the numbers x and y is then d(y – x), so that d(y – x)= 0 if and only if y= x, as is the case if x and y are
not discrepant, and the discrepancy d(y – x) of x and y is the same as the discrepancy d(x – y) of y and x. The convexity
condition and the requirement that d(0)= 0 imply that d(z)/z is nondecreasing for z > 0 and d(z) approaches ∞ if |z|
approaches ∞. Thus, for any real numbers w, x, y, and z such that |x−w|< |z − y|, d(x – w)≤ (| x – w | / | z – y |)d(z – y),
so that the discrepancy of x and w is no greater than the discrepancy of y and z. For convenience, it is assumed that d(1)= 1,
so that d(z)≤ |z| if | z |≥ 1 and d(z)≥ |z| if | z |≤ 1. For further convenience, it is assumed that, for a real number h(d)≥ 1,
d(z) / | z | h(d) converges to a positive real number if z approaches ∞. This assumption implies that d(Z) has a finite
expectation for a real random variable Z if and only if | Z |h(d) has a finite expectation. It is helpful but not necessary that
d be strictly convex, so that

d
(

y
)
− d (x)

y − x
<

d (z) − d (x)
z − x

for real numbers x, y, and z such that x< y< z. For a detailed discussion of the properties of convex functions used in
this report, see Rockafellar (1970). For a general treatment of convex functions in estimation, see Haberman (1989). The
definition of discrepancy function used here substantially simplifies conditions for measures to be defined and for results
to hold, and it does permit inclusion of the most common measures for numerical variables. As discussed in the section
Nominal Variables, the discrepancy function also applies to the study of nominal variables.

The quadratic discrepancy function q is the infinitely differentiable strictly convex function that satisfies q(z)= z2

for real z. Here h(q)= 2. The function q is the most appropriate discrepancy function for most purposes. It is
closely related to standard statistical concepts, such as least squares, variance, correlation, and mean squared error.
The other most important discrepancy function is the linear discrepancy function a such that a(z)= |z| for real
z. Here h(a)= 1. The linear discrepancy function is associated with statistical measures, such as mean absolute
deviations and least absolute deviations (Bloomfield & Steiger, 1983; Cicchetti & Allison, 1971). The function a
is not differentiable at 0 and is not strictly convex, for [a(y) – a(x)]/(y – x) is the same as [a(z) – a(x)]/(z – x) if
0 ≤ x < y < z.

ETS Research Report No. RR-19-20. © 2019 Educational Testing Service 3



S. J. Haberman Agreement Versus Measures of Prediction Accuracy

The absolute agreement measure uses the nonnegative convex function dJ on the set RJ of J-dimensional vectors to
measure average pairwise discrepancy (Conger, 1980; Hoeffding, 1948). For x in RJ with elements xj, 1 ≤ j ≤ J,

dJ (x) =
2

J (J − 1)

J∑
j=2

j−1∑
k=1

d
(

xj − xk

)
is the average value of the discrepancy d(xj – xk) of xj and xk for 1≤ k< j≤ J. If J = 2, then for x= (x1, x2),

d2
((

x1, x2
))

= d2
((

x2, x1
))

= d
(

x2 − x1
)
.

If J = 3 and x= (x1, x2, x3),

dJ
((

x1, x2, x3
))

= 1
3
[
d
(

x2 − x1
)
+ d

(
x3 − x1

)
+ d

(
x3 − x2

)]
.

The function dJ(x)= 0 if and only if xj = x1 for 2 ≤ j ≤ J. The function dJ is symmetric, for dJ(x)= dJ(xω) for all x in RJ

and ω in ΩJ . For example, d3((x1, x2, x3)) = d3((x2, x1, x3)) = d3((x3, x1, x2)) = d3((x3, x2, x1)) = d3((x1, x3, x2)) = d3((x2,
x3, x1)).

To simplify discussion, let Lh(d) be the linear space of real random variables Z such that | Z | h(d) has a finite expectation,
and assume that Xj is in Lh(d) for 1 ≤ j ≤ J. The absolute agreement measure DJ(X; d)=E(dJ(X))≥ 0 (Conger, 1980) is a
symmetric finite function of X. The expected discrepancy DJ(X; d)= 0 if and only if Xj = X1 with probability 1 for 2 ≤ j ≤ J.

In the case of quadratic discrepancy, because h(q)= 2, it is assumed that E
(

X2
j

)
is finite for 1 ≤ j ≤ J, so that the

expectation E(Xj) of Xj, the variance σ2(Xj)= E([Xj – E(Xj)]2) of Xj, and the standard deviation σ(Xj) of Xj are finite. If
x is a J-dimensional vector with elements xj, 1 ≤ j ≤ J, let mJ(x) be the sample mean J−1 ∑J

j=1 xj of the elements of x, and
let s2

J (x) be the sample variance be the sample variance (J−1)−1 ∑J
j=1[xj−mJ(x)]2 of the elements of x. Then dJ(x) is

qJ (x) =
2

J (J − 1)

J∑
j=2

j−1∑
k=1

(
Xj − Xk

)2
= 2s2

J (x) ,

and

DJ
(

X; q
)
= 2

J (J − 1)

J∑
j=2

j−1∑
k=1

E
([

Xj − Xk

]2
)

= E
(

qJ (X)
)
= 2E

(
s2

J (X)
)

(Hoeffding, 1948).
In the case of absolute discrepancy, because h(a)= 1, it is assumed that E(| Xj |) is finite for 1 ≤ j ≤ J. Here

dJ(x)= aJ(x), where aJ(x) is the average absolute difference |xj − xk| for 1 ≤ k < j ≤ J, and DJ(X; a)=E(aJ(X)) is the
average mean absolute difference E(| Xj – Xk |) for 1 ≤ k < j ≤ J. The Cauchy–Schwarz inequality implies that [DJ(X;

a)]2 ≤E([aJ(X)]2)≤DJ(X; q) when E
(

X2
j

)
is finite for 1 ≤ j ≤ J. For J = 2 variables, D2([X1, X2]; q)= E([X2 – X1]2) and

D2([X1, X2]; a)= E(| X2 – X1 |). In some cases, use of sorting facilitates computation. Let ΩJ(x) be the set of permutations
ω in Ω such that xω(j) is nondecreasing for 1 ≤ j ≤ J. For any positive integer j ≤ J, xω(j) has a constant value oJj(x) for ω in
ΩJ(x), and aJ(x) is the average of 2(J − 1)−1(2j− J − 1)oJj(x) for 1 ≤ j ≤ J (Haberman, 1996, p. 395). If J = 2,

a2 (x) = o22 (x) − o21 (x)

is the difference between the largest and smallest elements of x. For J = 3,

a3 (x) = 2
[
o33 (x) − o31 (x)

]
∕3,

while for J = 4,
a4 (x) =

[
3o44 (x) + o43 (x) − o42 (x) − 3o14 (x)

]
∕6.

For a positive integer j ≤ J, the less precise notation x(j) is often employed for oJj(x), and X(j) = oJj(X) is then the jth-order
statistic of the elements of X.
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For quadratic discrepancy, let Cov(Xj, Xk) denote the covariance of Xj and Xk for positive integers j and k no greater
than J, and let ρ(Xj, Xk) denote the correlation of Xj and Xk when Xj and Xk have positive variance. Then

DJ
(

X; q
)
= 2s2

J (E (X)) + 2E
(

s2
J (X − E (X))

)
.

If J = 2,
D2

((
X1,X2

)
; q
)
=
[
E
(

X2
)
− E

(
X1

)]2 + σ2 (X1
)
+ σ2 (X2

)
− 2Cov

(
X1,X2

)
,

where Cov(X1, X2)=σ(X1)σ(X2)ρ(X1, X2) if X1 and X2 have positive variance.
If X is symmetric, DJ(X; d)=D2((X1, X2); d)=E(d(X2 −X1)). In the case of quadratic discrepancy, if the condition is

added that X1 has positive variance, then DJ(X; q)= 2σ2(X1)[1−ρ(X1, X2)]. Under the further condition that X1 and X2
have a joint bivariate normal distribution, DJ(X; a)= (2/π1/2)σ(X1)[1−ρ(X1, X2)]1/2.

Measures of absolute agreement do not consider whether the variables Xj, 1 ≤ j ≤ J, exhibit a small expected discrep-
ancy because they are highly related or whether the small expected discrepancy arises because the variables do not vary.
For example, consider quadratic discrepancy. Let J = 2. Consider the symmetric case with X1 and X2 with the same dis-
tribution and X1 has positive variance. Then D2(X; q) can be small if σ2(X1) is small, even if X1 and X2 are uncorrelated.
On the other hand, D2(X; q) can also be small if the variance σ2(X1) is large but the correlation ρ(X1, X2) is close to 1.

Nominal Variables

In the case of nominal variables, a different approach is appropriate. Here a restricted version of the measures in Gilula
and Haberman (1995a) provides the basis for analysis. Let Xj, 1 ≤ j ≤ J, be in r. For real y, let δy be the real function on
the real line with value δy(x) at real x, where δy(x)= 1 if y = x and δy(x)= 0 if y ≠ x. If x in RJ has elements xj, 1 ≤ j ≤ J,
let 𝛅Jy(x) be the J-dimensional vector with elements δy(xj), 1 ≤ j ≤ J. Let dJr (x) =

∑r
j=1 dJ

(
𝛅r (x)

)
for any J-dimensional

vector x, and let DJr(X)=E(dJr(X)). For any discrepancy function d, dJr(x) is twice the fraction of positive integers j and
k such that k < j ≤ J and xj ≠ xk, and DJr(X) is the average of 2P(Xj ≠ Xk) for positive integers j and k such that k < j ≤ J,
where P(Xj ≠ Xk) is the probability that Xj and Xk are unequal. Thus DJr(X) is nonnegative and no greater than 2, and
DJr(X)= 0 if and only if x in r exists such that Xj = x with probability 1 for 1 ≤ j ≤ J. The measure DJr(X) is twice the
expected fraction of pairs Xj and Xk that are discrepant. In addition, DJr(X)=DJs(X) if s ≥ r is an integer. If r = 2, then
DJ2(X)= 2DJ(X; d). The function DJr(X; d) is a symmetric function of X. The function DJr(X) is also symmetric over
permutation transformations in the sense that DJr(X)=DJr(υ(X)), where υ(X) has elements υ(Xj), 1 ≤ j ≤ J, and υ is in the
set Ωr of permutations on r. Thus, if languages are Japanese, Chinese, and Korean, and the Xj are language classifications
with integer values 1, 2, and 3, then which numerical code from 1 to 3 is assigned to which language has no impact on the
measure. If J = 2 or X is symmetric, then DJr(X)= 2P(X2 ≠X1).

An alternative formula for DJr(X) is worth noting. For any positive integer y ≤ r, mJ(𝛅Jy(x)) is the fraction of positive

integers j ≤ J such that xj = y, and the sum
∑r

y=1 mJ

(
𝛅Jy (x)

)
= 1 if xj is in r for all positive integers j ≤ J. The fraction of

distinct positive integers j and k no greater than J such that xj ≠ xk is

DJr (X) = 2J
J − 1

{
1 −

r∑
y=1

E
([

mJ

(
𝛅Jy (X)

)]2
)}

,

so that

DJr (X) = 2J
J − 1

{
1 −

r∑
y=1

E
([

mJ

(
𝛅Jy (X)

)]2
)}

.

In studying nominal random variables, it is important to understand the strong constraints on the probability
P(X= x) that X= x, where x is a J-dimensional vector with all elements in r, by the marginal probabilities P(Xj = x) that
Xj = x, 1 ≤ j ≤ J, 1 ≤ x ≤ r. Consider Table 1 for the case of J = 2 and r = 2. In this case, the probability P(X2 ≠ X1)= .2
that X1 and X2 are not equal is relatively low; however, P(X2 ≠ X1)≤ .2 whenever P(X1 = 1)= P(X2 = 1)= .9 and
P(X1 = 2)= P(X2 = 2)= .1, so that the low value of P(X2 ≠ X1) just reflects the marginal distributions of X1 and X2.
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Table 1 An Example of P(X= x) for J = 2 and r = 2

x1 x2 = 1 x2 = 2

1 .8 .1
2 .1 0

Note. The elements of x are x1 and x2.

Given limitations associated with absolute measures of discrepancy, it is appropriate to consider proportional reduction
of expected discrepancy (Costner, 1965). With this approach, an absolute agreement measure such as D(X; q) is compared
to one or more relevant alternative agreement measures. The two cases considered here are kappa measures (Cohen,
1960, 1968) and lambda measures for agreement (Goodman & Kruskal, 1954). Kappa measures are more commonly
used, but lambda measures for agreement are also quite appropriate to consider. The case of J = 2 is the most commonly
encountered. The reliability terminology in Goodman and Kruskal (1954) is avoided to avoid conflict with conventional
psychometric concepts of reliability (Lord & Novick, 1968).

Kappa Measures

In the case of kappa measures of agreement for numerical measures, DJ(X; d) is compared to DJ(XJ; d), where XJ is the
J-dimensional random vector with elements Xjj, 1 ≤ j ≤ J. This random variable is significant because the elements Xjj
of XJ, 1 ≤ j ≤ J, are mutually independent and Xjj and Xj have the same distribution. Thus the agreement measured by
DJ(X; d) is compared to the agreement measured by a random vector with elements that are mutually independent but
have the same respective marginal distributions as the corresponding elements of X. Despite its appearance, DJ(XJ; d)
can be evaluated by use of only the independent random vectors X1 and X2, which both have the same distribution as X,
for DJ(XJ; d) is the expectation of eJ(X1, X2; d), where, for the K-dimensional vectors x1 and x2 with respective elements
xj1, 1 ≤ j ≤ J, and xj2, 1 ≤ j ≤ J, eJ(x1, x2) is the average of d(xj1 – xk2) for all distinct positive integers j and k such that
k < j ≤ J. For reasons that are not obvious, κ measures have been used traditionally only for cases in which the Xj, 1 ≤ j ≤ J,
are restricted to a finite set of possible values (Cohen, 1960, 1968; Conger, 1980). Despite this tradition, no reason exists
not to provide all definitions and results for general random vectors X.

An alternative approach to DJ(XJ, d) may be based on iterated expectations. With this approach, explicit reference to XJ
does not appear in formulas. To apply this approach, for a real random variable Z in Lh(d), let the nonnegative finite convex
function G(Z; d) be the function on the real line with value G(z, Z; d)= E(d(Z – z)) at real z. This function will be used
for a variety of applications in this report. Because d is convex, G(Z; d) is also convex. Because d(Z – z) approaches ∞ as
|z| approaches ∞, G(z, Z; d) approaches ∞ as |z| approaches ∞. Therefore a closed and bounded interval C(Z; d)= [cL(Z;
d), cU(Z; d)] with midpoint c(Z; d)= [cL(Z; d)+ cU(Z; d)]/2 exists such that G(z, Z; d) equals the infimum of G(Z; d) if
and only if z is in C(Z; d) (Rockafellar, 1970, p. 264). If d is strictly convex, then c(Z; d)= cL(Z; d)= cU(Z; d) is the only
member of C(Z; d).

To apply iterated expectations, for real random variables Z1 and Z2 in Lh(d), let G(Z1, Z2; d) be the finite random variable
with value G(z, Z2; d) if Z1 = z for the real number z. If Z1 and Z2 are independent, then Fubini’s theorem implies that
E(G(Z1, Z2; d))= E(G(Z2, Z1; d))=E(d(Z1 – Z2)) is finite. Thus DJ(XJ; d) is the average of E(G(Xk, Xj; d)) for 1 ≤ k < j ≤ J.
The mean discrepancy DJ(XJ; d)= 0 if and only if some real x exists such that Xj = x with probability 1 for 1 ≤ j ≤ J. If no
real x exists such that Xj = x with probability 1, then

κJ (X; d) =
DJ

(
XJ; d

)
− DJ (X; d)

DJ
(

XJ; d
) ,

so that κJ(X; d)=κ(Xω; d)≤ 1 for each permutation ω in ΩJ , with κJ(X; d)= 1 if and only if Xj =X1 with probability 1
for 2≤ j≤ J. In addition, κJ(X; d)= 0 if the Xj, 1≤ j≤ J, are pairwise independent (Cohen, 1968), although κJ(X; d)= 0
does not imply that the Xj, 1≤ j≤ J, are pairwise independent. If X is symmetric and no real x exists such that X1 = x with
probability 1, then

κJ (X; d) = 1 −
E
(

d
(

X2 − X1
))

E
(

G
(

X1,X2; d
)) .
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Quadratically weighted kappa is an especially attractive case due to its relationship to correlation and variance. If no
real x exists such that Xj = x with probability 1 for 1 ≤ j ≤ J, then

DJ
(

XJ; q
)
= 2s2

J (E (X)) + 2mJ
(
σ2 (X)

)
,

where σ2(X) is the J-dimensional vector with elements σ2(Xj) for 1≤ j≤ J, and

κJ
(

X; q
)
=

mJ
(
σ2 (X)

)
− E

(
s2

J (X − E (X))
)

s2
J (E (X)) + mJ (σ2 (X))

.

The numerator is also the average (J − 1)−1[Jσ2(mJ(X))−mJ(σ2(X))] of Cov(Xj, Xk) for 1 ≤ k < j ≤ J, so that κJ(X;
q)≥ − (J − 1)−1. If J = 2, X1 and X2 have finite variances, and no real x exists such that X1 = x and X2 = x with probability
1, then

κ2
(

X; q
)
=

2Cov
(

X1,X2
)

[
E
(

X2
)
− E

(
X1

)]2 + σ2
(

X1
)
+ σ2

(
X2

) .
In this case, κ2(X; q)= − 1 if E(X1)= E(X2) and X1 + X2 = 2E(X1) with probability 1. In the symmetric case, consider

σ2(X1)> 0. Then κJ(X; q)=ρ(X1, X2) is the intraclass correlation for exchangeable raters (Fleiss & Cohen, 1973). It is also
the parallel-form reliability in psychometrics if X1 and X2 are results of parallel tests. In general, if J = 2 and σ2(X1) and
σ2(X2) are positive, then κ2(X; q) and the correlation ρ(X1, X2) have the same sign and ∣κ2(X; q) ∣ ≤ ∣ ρ(X1, X2) ∣ ≤ 1.

Linear transformations of the Xj, 1 ≤ j ≤ J, can affect quadratically weighted kappa. For example, if J = 2, X1,
and X2 have positive variances, and Z = E(X2)+ [σ(X2)/σ(X1)][X1 – E(X1)], then κ2((Z, X2); q)= ρ(X1, X2). Unless
E(X1)= E(X2) and σ2(X1)= σ2(X2), κ2((Z, X2); q)> κ2(X; q); however, linear transformations of this kind are only
appropriate in limited circumstances. For example, if X1 measures temperature in Celsius and X2 provides Fahrenheit
measures, then use of Z = 32+ 1.8X1 rather than X1 is appropriate for a sensible comparison of the thermometers.
Nonetheless, consistent linear transformations on all the Xj do not affect quadratically weighted kappa. If Zj = c + bXj for
1 ≤ j ≤ J, c is a real constant, b is a positive real constant, and Z is the J-dimensional vector with elements Zj for 1 ≤ j ≤ J,
then κ(Z; q)=κ(X; q). This result does not hold for general monotone transformations. Thus κ(g(X); q) may differ from
κ(X; q) if g is a strictly increasing real function on the real line, g(X) is the J-dimensional random vector with elements
g(Xj) for 1 ≤ j ≤ J, and each g(Xj) is in L2. This report takes the values of the Xj as given and does not consider nonlinear
transformations.

Linearly weighted kappa corresponds to the absolute discrepancy measure a, so that κJ(X; a)= 1−E(aJ(X))/E(aJ(XJ))
if no real number x exists such that Xj = x with probability 1 for 1 ≤ j ≤ J. As in the case of quadratically weighted
kappa, κ(Z; a)=κ(X; a). If X is symmetric and has a multivariate normal distribution with σ2(X1)> 0, then κ(X;
a)= 1− [1−ρ(X1, X2)]1/2. Thus κ(X; a){1+ [1−ρ(X1, X2)]1/2}=ρ(X1, X2), κ(X; a), and ρ(X1, X2) have the same sign,
and |κ(X; a)|≤ |κ(X; q)|= |ρ(X1, X2)|.

Kappa Measures and Nominal Variables

In the case of nominal random variables, let r be a positive integer, and let Xj be in r for 1 ≤ j ≤ J. Assume that no y
in r exists such that Xj = y with probability 1 for 1 ≤ j ≤ J. Then κJr(X)= [DJr(XJ)−DJr(X)]/DJr(XJ), so that κJr(X) is a
symmetric function of X and κJr(X) is also symmetric with respect to permutations of the values of the Xj. In the case of
J = 2, κ2r(X) is the original kappa measure (Cohen, 1960). In computations, DJr(XJ) is twice the average of the probabilities

P
(

Xjj ≠ Xkk

)
= 1 −

r∑
y=1

P
(

Xj = y
)

P
(

Xk = y
)

for 1≤ k< j≤ J. Let pJ(X) be the r-dimensional vector with elements pJy(X), 1≤ y≤ r, equal to the average of the proba-
bilities P(Xj = y) for 1≤ j≤ J. Thus pJ(XJ)= pJ(X). It follows that

1
2

DJr
(

XJ
)
= 1 − J

J − 1

r∑
y=1

[
pJy (X)

]2
+ [J (J − 1)]−2

r∑
y=1

J∑
j=1

[
P
(

Xj = y
)]2

.
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The equation κJr(X)= 1 can only hold if Xj = X1 with probability 1. If the Xj, 1 ≤ j ≤ k, are pairwise independent, then
κJ2(X)= 0. If r = 2, then κJ2(X)=κJ(X; d). For example, in Table 1, κ22(X)=κ2(X; q)= − 1/9 indicates that the agreement
of X1 and X2 is less than would be expected were X1 and X2 independent.

Lambda Measures for Agreement

Lambda measures for agreement provide a case of proportional reduction of error that does not involve use of the hypo-
thetical vector XJ . They generalize a measure proposed in Goodman and Kruskal (1954). Because they have received
relatively little attention despite the importance of their source, details here are generally new, although many results are
related to those in Haberman (1989). As evident from results to be presented, their use may also have been affected by the
more conservative picture of agreement they provide relative to the picture provided by kappa.

For lambda measures for agreement, the base for comparison involves prediction by a constant. For real x and a
J-dimensional vector x with elements xj for 1 ≤ j ≤ J, let ηJ(x; d) be the nonnegative real convex function with value

ηJ (x, x; d) = J−1 ∑J
j=1 d

(
xj − x

)
at x. Let Xj be in Lh(d) for 1 ≤ j ≤ J, and let GJ(X; d) be the finite and nonnegative convex

function E(ηJ(X; d)). Let GJ(X; d) have value G(x, X; d) at x. Let GJ−(X; d) be the infimum of GJ(X; d), so that GJ(X; d) is
positive if and only if no real x exists such that Xj = x with probability 1 for 1 ≤ j ≤ J. As in the case of G(Z; d) for Z in Lh(d),
GJ(x, X; d) approaches ∞ as | x | approaches ∞, a nonempty closed and bounded interval CJ(X; d)= [cJL(X; d), cJU(X; d)]
exists with midpoint cJ(X; d)= [cJL(X; d)+ cJU(X; d)]2 such that real x satisfies GJ(x, X; d)=GJ−(X; d) if and only if x is
in CJ(X; d). If d is strictly convex, then cJ(X; d)= cJL(X; d)= cJU(X; d) is the only element of CJ(X; d). If no real x exists
such that Xj = x with probability 1 for 1 ≤ j ≤ J, then GJ−(X; d)> 0, and the lamba measure for agreement

λJa (X; d) =
GJ− (X; d) − DJ (X; d)

GJ− (X; d)

is no greater than 1 and is equal to 1 if and only if Xj =X1 with probability 1 for 2≤ j≤ J. The symmetry property holds
that λJa(Xω; d)=λJa(X; d) for each permutation ω in ΩJ .

To interpret the lambda measure, observe that the equation DJ(X)=E(dJ(X)) and the symmetry of d imply that

dJ (X) = 1
J (J − 1)

J∑
j=2

j−1∑
k=1

[
d
(

Xj − Xk

)
+ d

(
Xk − Xj

)]
.

One can regard Xj as a predictor of Xk and Xk as a predictor of Xj if 1 ≤ k < j ≤ J. For a real number x, consider
prediction of Xj by x and prediction of Xk by x for 1 ≤ k < j ≤ J. The average discrepancy

1
J (J − 1)

J∑
j=2

j−1∑
k=1

[
d
(

Xj − x
)
+ d

(
Xk − x

)]
= ηJ (x,X; d)

has expectation equal to GJ(x, X; d), so that GJ−(X; d) is the minimum achievable expected average from use of x to predict
each Xj, 1≤ j≤ J. Thus the comparison of DJ(X; d) involves a trivial predictor of each Xj that makes no use of any possible
differences between the Xj or any possible relationships between the Xj.

Basic properties of λJa(X; d) are readily obtained. The measure λJa(X; d)= 1 if and only if Xj = X1 with probability 1 for
2 ≤ j ≤ J. If each Xj, 1 ≤ j ≤ J, has the same marginal distribution, then GJ(X; d)=G(X1; d), CJ(X; d)=C(X1; d), cJL(X;
d)= cL(X1; d), cJU(X; d)= cU(X1; d), cJ(X; d)= c(X1; d), and GJ−(X; d)=G−(X1; d).

To compare λJa(X; d) and κJ(X; d), observe that

GJ− (X; d) = GJ−
(

XJ; d
)
≤ J−1

J∑
j=1

E
(

G
(

Xk,Xj; d
))

= J−1
J∑

j=1
E
(

d
(

Xjj − Xkk

))
for 1≤ k≤ J and 1≤ j≤ J such that j≠ k. Averaging over k from 1 to J yields

GJ− (X; d) ≤ J − 1
J

DJ
(

XJ; d
)
.
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Thus λJa(X; d)≤ (J − 1)−1[JκJ(X; d)− 1]. Unless Xj = X1 with probability 1 for 2 ≤ j ≤ J, λJa(X; d)< κJ(X; d). If X is
symmetric, and no real x exists such that X1 = x, then λJa(X; d)=λ2a((X1, X2); d)≤ 2κ2((X1, X2); d)− 1= 2κJ(X; d)− 1,
so that λJ(X; d)< κJ(X; d) unless Xj = X1 with probability 1 for 2 ≤ j ≤ J.

In the case of the quadratic discrepancy function q, each Xj is in L2,

GJ
(

x,X; q
)
= J−1

J∑
j=1

{
σ2

(
Xj

)
+
[

E
(

Xj

)
− x

]2
}

for real x, and GJ(y, X; d)=GJ−(X; q) if x=mJ(E(X)) is the average of E(Xj) for 1≤ j≤ J, so that

GJ−
(

X; q
)
= mJ

(
σ2 (X)

)
+
[
(J − 1) ∕J

]
s2

J (E (X)) .

If X is symmetric and X1 has a positive and finite variance, λJa(X; q)= 2ρ(X1, X2)− 1= 2κJ(X; q)− 1. If ρ(X1,
X2)< 1/2, then λJa(X; q) is negative, so that, in terms of quadratic discrepancy, X2 is better predicted by the expectation
E(X2)= E(X1) than by X1 as a predictor. For J = 2 and X1 and X2 parallel tests, λ2a((X1, X2)); q)= 2ρ(X1, X2) – 1, where
ρ(X1, X2)= κ2((X1, X2); q) is the parallel-form reliability. This result shows the contrast between the use of reliability
by Goodman and Kruskal (1954) for a measure such as λ2a((X1, X2); q) and the customary psychometric concept of
parallel-form reliability.

In the case of the absolute discrepancy function a, GJ−(X; a) is the minimum of J−1 ∑J
j=1 E

(|Xj − x|) for real x. If U
is a random variable independent of X such that U = j with probability J−1 for 1 ≤ j ≤ J and XU is the random variable
with value Xj if U = j and 1 ≤ j ≤ J, then GJ−(X; a) is the mean absolute deviation MD(XU) of XU about the median. Here
any member of CJ(X; a) is a median of XU . If no real x exists such that Xj = x with probability 1 for 1 ≤ j ≤ J, then λJa(X;
a) is defined. In addition, if each Xj has the same distribution, then GJ−(X; a) is the mean absolute deviation MD(X1) of
X1 about the median, where any element of C(X1; a) is a median of X1. If X is symmetric and has a multivariate normal
distribution, then

λJa (X; a) = 1 −
{

2
[
1 − ρ

(
X1,X2

)]}1∕2 = 1 − 21∕2 [1 − κJ (X; a)
]
,

so that λJa(X; a)=κJ(X; a)= 1 if X1 =X2 with probability 1 and λJa(X; a)< κJ(X; a) otherwise. In this case, λJa(X; a) is
negative if ρ(X1, X2)< 1 / 2.

Lambda Measures of Agreement for Nominal Variables

The case of lambda measures of agreement for nominal variables involves probability prediction (Gilula & Haberman,
1995a, 1995b). Let r be a positive integer such that Xj is in r for 1 ≤ j ≤ J. Let the unit simplex Πr be the set of nonnegative
r-dimensional vectors with elements with sum 1. For a J-dimensional vector x with all elements xj, 1 ≤ j ≤ J, in r, let ηJr(x;

d) be the convex function on Πr with value ηJr
(

p, x; d
)
=
∑r

y=1 ηJ

(
py, 𝛅Jy (X) ; d

)
at p in Πr with elements py for y in r.

Let GJr(X; d) be the convex function on Πr with value GJr(p, X; d)=E(ηJr(p, X; d)) at p in Πr , and let GJr−(X; d) be the
infimum of GJr(X; d). If no x in r exists such that Xj = x with probability 1 for 1 ≤ j ≤ r, then GJr−(X; d) is positive and

λJar (X; d) =
[
GJr− (Z; d) − DJr (X)

]
∕GJr− (X; d) .

The measure λJar(X; d) does not exceed 1 and only equals 1 if Xj = X1 with probability 1 for 2 ≤ j ≤ J. Because Πr is
closed and bounded, a nonempty closed convex subset CJr(X; d) of Πr exists such that GJr(p, X; d)=GJr−(X; d) if and only
if p is in CJr(X; d). If d is strictly convex, then CJr(X; d) has only one member cJr(X; d). The use of the notation λJar(X;
d) reflects the fact that the definition of d affects the lambda measure of agreement. If r = 2, then λJa2(X; d)=λJa(X). The
measure λJar(X) is symmetric in X and in permutations of the values of Xj, 1 ≤ j ≤ J.

In the case of quadratic discrepancy, GJr(p, X; q) is minimized for p in Πr if p= pJ(X). It follows that

GJr−
(

X; q
)
= J−1

r∑
y=1

J∑
j=1

{
P
(

Xj = y
) [

1 − P
(

Xj = y
)]

+
[

P
(

Xj = y
)
− pJy (X)

]2
}

= 1 −
r∑

y=1

[
pJy (X)

]2
.
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In the case of absolute discrepancy, GJr− (X; a) = 1 − maxr
y=1 pJy (X). The original reliability measure (Goodman &

Kruskal, 1954) is defined for J = 2 as λ2ar(X; a). In Table 1, λ2a2(X; q)= 2κ22(X)− 1= − 11/9 and λ2a2(X; a)= − 1.

Measures of Prediction Accuracy

In measures of prediction accuracy based on the discrepancy function d, the real random variable Y in Lh(d) is predicted by
a real function f (Z) in Lh(d) of a random vector Z with elements Zk, 1 ≤ k ≤ K <∞. To avoid problems with identification,
assume that any closed convex set U has a nonempty interior if the probability is 1 that Z is in U (Berk, 1972). Let  be
the image of Z, so that a K-dimensional vector z is in  only if Z can assume the value z. The function f is in a family F
of real functions on  that includes the family all constant functions on . The family F is assumed included in the set
Lh(d)(Z) of real function f on  such that f (Z) is in Lh(d). Let G(Y ∣Z; d) be the convex function on Lh(d)(Z) with value
G(f , Y ∣Z, d)=E(d(Y − f (Z))) at f in Lh(d)(Z) equal to the expected discrepancy between the predicted value Y and the
predictor f (Z). For the family F, G−(Y ∣Z; F, d), the infimum of G(f , Y ∣Z; d) over f in F provides an absolute measure of
prediction accuracy. By definition,

G− (Y ∣ Z; d) = G−
(

Y|Z; Lh(d) (Z) , d
)
≤ G− (Y ∣ Z; F, d) ≤ G− (Y; d) .

If no real number y exists such that Y = y with probability 1, then the corresponding relative measure of prediction
accuracy for the family F is

λ (Y ∣ Z; F, d) = 1 −
G− (Y ∣ Z; F, d)

G− (Y; d)
.

It follows that
0 ≤ λ (Y ∣ Z; F, d) ≤ λ (Y ∣ Z; d) = λ

(
Y|Z; Lh(d) (Z) , d

)
≤ 1.

If f in F satisfies the condition that Y = f (Z) with probability 1, then G−(Y ∣Z; F, d)= 0 and λ(Y ∣Z; F, d)= 1.
Let C(Y ∣Z; F, d) be the set of f in F such that G(f , Y ∣Z; d)=G−(Y ∣Z; d). If F is convex and C(Y ∣Z; F, d) is nonempty,

then C(Y ∣Z; F, d) is convex. Thus C(Y ∣Z; d)=C(Y| Z; Lh(d)(Z)) is convex if it is nonempty. Use of conditional distribu-
tions permits a demonstration that C(Y ∣Z; d) is not empty. Because Y is a real random variable and Z is a real random
vector, a conditional distribution of Y given Z can be defined (Lehmann, 1986, pp. 48–52). Conditional expectations are
not uniquely defined unless  is a finite or countably infinite set and the probability that Z= z is positive for all z in ;
however, the lack of uniqueness in other cases has no practical effect. Define the conditional expectation of Y given Z so
that the conditional expectation E(Y| Z= z) of Y given Z= z is finite for all z in. For z in, let G(Y ∣Z= z; d) be the con-
vex real function on the real line with value G(y, Y ∣Z= z; d)=E(d(Y − y)| Z= z) at real y, and let G−(Y ∣Z= z; d) be the
infimum of G(Y| Z= z). As in the case of G(Y ; d), the set C(Y ∣Z= z; d) of real y such that G(y, Y ∣Z= z; d)=G−(Y ∣Z= z;
d) is a closed and bounded nonempty interval [cL(Y ∣Z= z; d), cU(Y ∣Z= x; d)] with midpoint c(Y ∣Z= z; d). If d is strictly
concave, c(Y ∣Z= z; d)= cL(Y ∣Z= z; d)= cU(Y ∣Z= z; d) is the only member of C(Y ∣Z; d). Let c(Y||Z; d) be c(Y ∣Z= z;
d) if Z= z in T. Then c(Y||Z; d) and d(Y − c(Y||Z; d)) are random variables. Let G−(Y||Z; d)=G−(Y ∣Z= z; d) if Z= z in
RK , so that G−(Y||Z; d)= d(Y − c(Y||Z; d)). For any g in Lh(d), G−(Y||Z; d)≤ d(Y − g(Z)), so that d(Y − c(Y||Z; d)) has
finite expectation E(d(Y − c(Y||Z; d))=E(G−(Y||Z; d))≤G(f , Y ∣Z; d) for all f in Lh(d), c(Y||Z; d) is in Lh(d), and G−(Y ∣Z;
d)=E(G−(Y||Z; d)).

In the case of quadratic discrepancy, G – (Y ; q)= σ2(Y). For z in , c
(

Y ∣ Z = z; q
)
= E (Y|Z = z) ,G−

(
Y ∣ Z = z; q

)
is the conditional variance σ2(Y| Z= z)=E([Y −E(Y| Z= z)]2| Z= z) of Y given Z= z, and G−(Y ∣Z; d)=E(σ2(Y||Z)),
where σ2(Y||Z) is σ2(Y| Z= z) if Z= z in  (Blackwell, 1947). In this case, if f and g are in C(Y ∣Z; q), then g(Z)= f (Z)
with probability 1. In the case of absolute discrepancy, G−(Y ; a) is the mean deviation MD(Y) of Y about the median,
G−(Y| Z= z) is the conditional mean deviation MD(Y| Z= z) of Y given Z= z for z in, and G−(Y ∣Z; a)=E(MD(Y||Z)),
where MD(Y||Z) is MD(Y ∣Z= z if Z= z in  (Haberman, 1996, pp. 396–398).

If Y and Z are independent, then the conditional distribution of Y given Z may be defined so that, for f in Lh(d)(Z),
the distribution of d(Y − f (Z)) given Z= z in  is the same as the unconditional distribution of d(Y − f (z)). It follows
that G−(Y||Z; d) is the constant function G−(Y ; d), G−(Y ∣Z; d)=G−(Y ; d), and λ(Y ∣Z; d)= 0. For any nonempty subset
F of Lh(d)(Z) that includes all constant functions on RK , it then follows that G−(Y ∣Z; F, d)=G−(Y ; d) and λ(Y ∣Z; F,
d)= 0. At the other extreme, if λ(Y ∣Z; d)= 1, then f in Lh(d)(Z) exists such that Y = f (Z) with probability 1. If f is in F,
T =Y − f (Z) is independent of Z, and G−(T; d)= E(d(T)), then G−(T||Z; d) has the constant value E(d(T)), so that G(f ,
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Table 2 Probabilities P(Y 2 = y, Z1 = z1)

y P(Y = y, Z1 = 1) P(Y = y, Z1 = 2) P(Y = y, Z1 = 3)

1 .1 .2 .2
2 .2 .1 .2

Y ∣Z; d)=G−(Y ∣Z; d)=E(d(T)), and f is in C(Y ∣Z; F, d). In the case of quadratic discrepancy, the condition on G−(T;
d) is just the requirement that E(T)= 0. In the case of absolute discrepancy, the corresponding requirement is that T have
a median of 0.

One common special case of interest arises if Zk is in Lh(d) for 1 ≤ k ≤ K. Let AK be the set of affine real functions on
RK , so that f is in AK if and only if f ((1− c)z1 + cz2)= (1− c)f (z1)+ cf (z2) if z1 and z2 are in RK and c is real. If f is in
AK , then the subset f – 1(0) of RK such that f (z)= 0 if and only if z is in f – 1(0) is closed and convex (Rockafellar, 1970,
pp. 6–10). Unless f is identically 0, f – 1(0) has dimension less than K and an empty interior. Let A(Z) be the set of real
functions f on  that are restrictions to  of affine real functions on RK . If f is in A(Z) and f (z) is not 0 for some z in
, then the probability that f (Z)= 0 is less than 1, for otherwise a closed convex set with an empty interior would exist
that includes Z with probability 1. If f is not identically 0, d(Y − af (Z)) approaches ∞ with positive probability as |a|
approaches ∞, so that E(d(Y − af (Z))) approaches ∞ if |a| approaches ∞. It follows that C(Y| Z; A(Z), d) is a nonempty
and bounded convex set (Rockafellar, 1970, pp. 264–265). In the case of quadratic dispersion, C(Y| Z; A(Z), q) has a
single element c(Y| Z; A(Z), d), and G−(Y| Z;, q) is the infimum σ(Y)[1−ρ2(Y| Z)] of σ2(Y − b′Z) for b in RK , where the
coefficient of determination ρ2(Y| Z) is the maximum squared correlation of Y and b′Z for b in RK with some nonzero
element. It follows that λ(Y| Z; A(Z), q)=ρ2(Y| Z). If Y and Z have a joint multivariate normal distribution, then λ(Y ∣Z;
q)=λ(Y| Z; A(Z), q), G−(Y ; a)= (2/π)1/2σ(Y), G−(Y| Z; A(Z), a)=G−(Y ∣Z; a)= (2/π)1/2σ(Y)[1−ρ2(Y| Z)]1/2, and
λ(Y ∣Z; a)=λ(Y| Z; A(Z), a)= 1− [1−ρ(Y| Z)]1/2. Without the assumption of multivariate normality, G−(Y| Z; A(Z), a)
is the infimum of MD(Y − b′Z) for b in RK , so that G−(Y ∣Z; A(Z, d) involves minimization of mean absolute error
(Bloomfield & Steiger, 1983).

To illustrate lack of symmetry, consider K = 1 and Y is the random vector with the single element Y . Then λ(Y ∣Z; d)
and λ(Z1 ∣Y; d) may differ. Consider Table 2. Here λ(Y ∣Z; a)= .2 and λ(Z1 ∣Y; a)= 0.

Nominal Prediction

Prediction of a nominal variable by probability prediction may also be considered. Let r be a positive integer, and let Y

be in r. For y in r, let ηr(y; d) be the nonnegative convex function on Πr with value ηr
(

p, y; d
)
=

r∑
i=1

d
(
δy (i) − pi

)
. Let

Br(Z) be the convex set of functions f from  to Πr such that f(Z) is a random vector. Let Fr be a subset of Br(Z) that
includes all constant functions on  with value in Πr . Let Gr(Y ; d) be the nonnegative convex function on Πr with value
Gr(p, Y ; d)=E(ηr(p, Y ; d)) at p in Πr , and let Gr-(Y ;d) be the infimum of Gr(Y ; d). Because Πr is closed and bounded, a
nonempty closed convex set Cr(Y ; d) exists such that p in Πr is in Cr(Y ; d) if and only if Gr(p, Y ; d)=Gr−(Y ; d). The set
contains only one member cr(Y ; d) if d is strictly convex. Let Gr(Y ∣Z; d) be the real nonnegative convex function on Br(Z)
with value Gr(f, Y ∣Z; d)=E(ηr(f(Z), Y ; d)) at f in Br(Z). Let Gr−(Y| Z; Fr , d)≥ 0 be the infimum of Gr(Y ∣Z, d) on Fr . Let
Cr(Y| Z; Fr , d) be the set of f in Fr such that f is in Cr(Y ∣Z; d) if and only if Gr(f, Y ∣Z; d)=Gr−(YIZ; Fr , d). If Fr is convex
and Cr(Y ∣Z; d) is nonempty, then Cr(Y| Z; Fr , d) is convex. If f in Fr exists such that 𝛅r(Y)= f(Z) with probability 1, then
Gr−(Y| Z; Fr , d)= 0. The dispersion measure Gr – (Y ; d) is 0 if and only if y in r exists such that Y = y with probability 1.
If no y in r exists such that Y = y with probability 1, then the measure of proportional reduction in error for Fr and d is

λr
(

Y|Z; Fr, d
)
= 1 −

Gr−
(

Y|Z; Fr, d
)

Gr− (Y; d)
.

The value of λr(Y| Z; Fr , d) is nonnegative. If f in Fr exists such that 𝛅r(Y)= f(Z) with probability 1, then
λr(Y| Z; Fr , d)= 1. Let Gr−(Y ∣Z; d)=Gr−(Y| Z; Br(Z), d) and λr(Y ∣Z; d)=λr(Y| Z; Br(Z), d). Then Gr−(Y| Z; Fr , d)≥Gr−
(Y ∣Z; d) and λr(Y| Z; Fr , d)≤ λr(Y ∣Z; d). The set Cr(Y ∣Z; d)=Cr(Y| Z; Br(Z), d).

The conditional distribution of Y given Z can be used to show that Cr(Y ∣Z; d) is not empty and therefore convex. For
z in , let Gr−(Y ∣Z= z; d) be the infimum of Gr(Y ∣Z= z; d), where Gr(Y ∣Z= z; d) is the function on Πr with value
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Gr(p, Y ∣Z= z; d) at p in Πr equal to the conditional expectation of ηr(p, Y ; d) given Z= z. Then the set Cr(Y ∣Z= z;
d) of p in Πr that satisfy Gr(p, Y ∣Z= z; d)=Gr−(Y ∣Z= z; d) is nonempty, bounded, closed, and convex. The set has a
single member cr(Y ∣Z= z; d) if d is strictly convex. Let Gr−(Y||Z; d)=Gr−(Y ∣Z= z; d) if Z= z in . Then Gr−(Y ∣Z;
d)=E(Gr−Y||Z; d)). There exists f in Br(Z) such that f(z) is in Cr(Y ∣Z= z; d) for all z in  (Brown & Purves, 1973), so
that Gr−(Y ∣Z; d)=Gr(f, Y ∣Z; d). Thus f is in Cr(Y ∣Z; d). It follows that the error measure Gr−(Y ∣Z; d)= 0 if and only if
f in Br(Z) exists such that Y = f(Z) with probability 1. As in the case of prediction of a numerical variable, it follows that
Gr−(Y| Z; Fr , d)=Gr−(Y ; d) and λr(Y| Z; Fr , d)= 0 if Y and Z are independent.

The simplest cases of Fr involve a function h on onto an H-dimensional finite set such that h(Z) is a random vector
and P(h(Z)= u)> 0 for each u in . The set Br(h, Z) consists of all functions f= g(h) such that g is a function from  to
Πr . In this case, the conditional distribution of Y given h(Z) is uniquely defined, Gr−(Y ∣Z; Br(h, Z), d)=Gr−(Y| h(Z); d),
and λr(Y ∣Z; Br(h, Z), d)=λr(Y| h(Z); d).

For nominal predicted variables, quadratic discrepancy is quite attractive, for Gr−
(

Y; q
)
= 1 −

∑r
y=1

[
P
(

Y = y
)]2 is

the coefficient of concentration of Y (Haberman, 1982a). If Y and Y ′ are independent random variables with the same dis-
tribution, then Gr – (Y ; q)= P(Y ≠ Y ′). If Y and Y ′′ are conditionally independent given Z and have the same conditional
distribution given Z, then Gr−(Y ∣Z; q)= P(Y ≠Y ′′) is the expected conditional coefficient of concentration of Y given
Z. The measure λr(Y ∣Z; q) corresponds to the tau measure (Goodman & Kruskal, 1954; Haberman, 1982a, 1982b). Here
λr(Y ∣Z; q)= 0 if and only if Y and Z are independent. The case of absolute discrepancy also leads to a simple result. Here
Gr – (Y ; a)= 1 – max1≤ y ≤ rP(Y = y), and Gr−(Y ∣Z; a) is the expectation of 1−max1≤ y≤ rP(Y = y||Z), where P(Y = y| Z)
has value P(Y = y| Z= z) if Z= z in  and P(Y = y| Z= z) is the conditional probability that Y = y given Z= z. The mea-
sure λr(Y ∣Z; a) corresponds to the lambda measure of Goodman and Kruskal. For r = 2, λr(Y ∣Z; a)=λ(Y ∣Z; a). As in
the case of prediction of a numeric variable, the disadvantage of absolute discrepancy is that λr(Y ∣Z; a) can be 0 even if
Y and Z are not independent.

To illustrate the problem with λr(Y ∣Z; a), consider Table 2 for K = 1. Here λ2(Y ∣Z; a)= 0.2 but λ3(Z1 ∣Y;
a)= 0. The difference in the number of categories for Y and Z1 is not essential here. If Z1 only had values 1 and 2,
P(Y = Z1 = 1)= P(Y = 1, Z1 = 2)= 1 / 4, P(Y = 2, Z1 = 1)= 1 / 12, and P(Y = Z1 = 2)= 5 / 12, then λ2(Y ∣Z; a)= 1/3
and λ2(Z1| Y)= 0.

Estimation of Measures

Estimation of measures of agreement and prediction accuracy varies somewhat in difficulty. To begin, measures of absolute
agreement are considered. These measures are relatively straightforward to estimate. The kappa family is then examined.
Here results are straightforward in a sense, but implementation must be considered. Lambda measures for agreement add
complications related to the minimization portion of the definition. Measures of prediction involve issues quite similar
to those for lambda measures for agreement and also can involve further problems associated with spaces of excessive
dimension. For discussion of many cases in which all variables under study are nominal, see Goodman and Kruskal
(1963, 1972).

Measures of Absolute Agreement

Let Xj be in Lh(d) for 1 ≤ j ≤ J and let no real x exist such that Xj = x with probability 1 for 1 ≤ j ≤ J. Then the initial n ≥ 1
observations Xi, 1 ≤ i ≤ n, yield an unbiased estimate D̂Jn (X; d) = n−1 ∑n

i=1 dJ
(

Xi
)

of DJ(X; d) that, by the strong law of
large numbers, converges with probability 1 to DJ(X; d) as n approaches ∞.

In the nominal case, all elements of X are positive integers no greater than the positive integer r ≥ 2. Then the unbiased
estimate D̂Jrn (X) = n−1 ∑n

i=1 dJr
(

Xi
)

of DJr(X; d) converges with probability 1 to DJr(X) as n approaches ∞.
Under the added condition that Xj is in L2h(d) for 1 ≤ j ≤ J, the variance σ2

(
D̂Jn (X; d)

)
is n−1σ2(dJ(X)). As the sample

size n approaches ∞,

n1∕2
[

D̂Jn (X; d) − DJ (X; d)
]

converges in distribution to a normal random variable with mean 0 and variance σ2(dJ(X)).
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In addition, in the nominal case in which Xj is in r for 1 ≤ j ≤ J, σ2
(

D̂Jrn (X)
)
= n−1σ2 (dJr (X)

)
. As n approaches ∞,

n1∕2
[

D̂Jrn (X) − DJr (X)
]

converges in distribution to a normal random variable with mean 0 and variance σ2(dJr(X)).
For n ≥ 2, the estimate

s2
n
(

dJ (X)
)
= (n − 1)−1

n∑
i=1

[
dJ
(

Xi
)
− D̂Jn (X; d)

]2

is an unbiased estimate of σ2(dJ(X)), and s2
n
(

dJ (X)
)

converges to σ2(dJ(X)) with probability 1 as n approaches ∞. Thus
s2

n

(
D̂Jn (X; d)

)
= n−1s2

n
(

dJ (X)
)

provides an unbiased estimate of σ2
(

D̂Jn (X; d)
)

. An asymptotic confidence interval for

DJ(X; d) is available. Let sn

(
D̂Jn (X; d)

)
be the nonnegative square root of s2

n

(
D̂Jn (X; d)

)
. Let 0 < α < 1, and let zα/2 be

the real number such that a standard normal random variable exceeds zα/2 with probability α/2. If dJ(X) does not equal
DJ(X; d) with probability 1, then, as n approaches ∞, the probability approaches 1 – α that

∣ DJ (X; d) − D̂Jn (X; d) ∣≤ zα∕2sn

(
D̂Jn (X; d)

)
.

The same argument for the nominal case with Xj in r for 1 ≤ j ≤ J shows that

s2
n
(

dJr (X)
)
= (n − 1)−1

n∑
i=1

[
dJr

(
Xi
)
− D̂Jrn (X)

]2

is an unbiased estimate of σ2(dJr(X)), and s2
n
(

dJr (X)
)

converges to σ2(dJr(X)) with probability 1 as n approaches ∞. Thus
s2

n

(
D̂Jrn (X)

)
= n−1s2

n
(

dJr (X)
)

provides an unbiased estimate of σ2
(

D̂Jnr (X)
)

. For an asymptotic confidence interval, let

sn

(
D̂Jnr (X)

)
be the nonnegative square root of s2

n

(
D̂Jrn (X)

)
. If dJr(X) does not equal DJr(X) with probability 1, then, as

n approaches ∞, the probability approaches 1 – α that

∣ DJr (X) − D̂Jrn (X) ∣≤ zα∕2sn

(
D̂Jrn (X)

)
.

Kappa Measures

Examination of kappa measures entails use of U-statistics (Hoeffding, 1948). Assume that n ≥ 2. As in the case of absolute
measures of agreement, assume that Xj is in Lh(d) for 1 ≤ j ≤ J and no real x exists such that Xj = x with probability
1 for 1 ≤ j ≤ J. The U-statistic D̂Jn

(
XJ; d

)
is the average of eJ(Xi(1), Xi(2); d) for positive integers i(1) and i(2) such that

1 ≤ i(2)< i(1)≤ n. As n approaches ∞, D̂Jn
(

XJ; d
)

converges to DJ(XJ; d) with probability 1 (Hoeffding, 1948, 1961; Lee,
1990), and

κ̂Jn (X; d) =
D̂Jn

(
XJ; d

)
− D̂Jn (X; d)

D̂Jn
(

XJ; d
)

converges to κJ(X; d) with probability 1. The convention is used throughout the report that 0 / 0= 0. It should be noted that
D̂Jn

(
XJ; d

)
= 0 implies that D̂Jn (X; d) is also 0, so that κ̂Jn (X; d) = 0 if, for some real x, Xij = 0 for 1≤ i≤ n and 1≤ j≤ J.

In the nominal case, for x1 and x2 J-dimensional vectors with elements in r, let eJr(x1, x2) be
∑r

y=1 eJ

(
𝛅Jy

(
x1
)
, 𝛅Jy

(
x2
))

.

The choice of d has no effect, so the discrepancy function does not appear for eJr(x1, x2). Then D̂Jnr
(

XJ
)

is the average
of eJr(Xi(1), Xi(2)) for positive integers i(1) and i(2) such that i(2)< i(1)≤ n. As n approaches ∞, D̂Jrn

(
XJ
)

converges to
DJr(XJ) with probability 1, and

κ̂Jrn (X) =
D̂Jrn

(
XJ
)
− D̂Jrn (X)

D̂Jrn
(

XJ
)

converges to κJr(X) with probability 1.
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Normal approximations are somewhat more complex. Let Xj be in L2h(d) for 1 ≤ j ≤ J. For x in RK , let EJ(X; d)
be the random variable with value E(eJ(x, X; d)) at a J-dimensional vector x if X= x. By Fubini’s theorem, E(EJ(X;
d))=E(eJ(eJ(X1, X2; d))=DJ(XJ; d). As the sample size n increases,

n1∕2
[

D̂Jn
(

XJ; d
)
− DJ

(
XJ; d

)]
converges in law to a normal random variable with mean 0 and variance 4σ2(EJ(X; d)). The variance σ2

(
D̂Jn

(
XJ; d

))
satisfies the condition that nσ2

(
D̂Jn

(
XJ; d

))
converges to 4σ2(EJ(X; d)), but an exact expression is a bit more complex.

For n≥ 3,

σ2
(

D̂Jn
(

XJ; d
))

= 1
n (n − 1)

[
4 (n − 2) σ2 (EJ (X; d)

)
+ 2σ2 (eJ

(
X1,X2; d

))]
.

For 1 ≤ i ≤ n, let ÊJin (X; d) be the average of eJ(Xi, Xk; d) for positive integers k ≤ n not equal to i, and let

s2
n
(

EJ (X; d)
)

be the average of
[

ÊJin (X; d) − D̂Jn
(

XJ; d
)]2

for 1 ≤ i ≤ n. Let s2
n
(

eJ
(

X1,X2; d
))

be the average of[
eJ
(

Xi,Xk; d
)
− D̂Jn

(
XJ; d

)]2
for 1 ≤ k < i ≤ n. For n ≥ 4, an unbiased estimate of σ2

(
D̂Jn

(
XJ; d

))
is

s2
n

(
D̂Jn

(
XJ; d

))
= [(n − 2) (n − 3)]−1 [4 (n − 1) s2

n
(

EJ (X; d)
)
− 2s2

n
(

eJ
(

X1,X2; d
))]

.

Let s2
na

(
D̂Jn

(
XJ; d

))
= 4s2

n
(

EJ (X; d)
)
∕n. Let sn

(
D̂Jn

(
XJ; d

))
be the positive square root of s2

n

(
D̂Jn

(
XJ; d

))
if

s2
n

(
D̂Jn

(
XJ; d

))
> 0, and let sn

(
D̂Jn

(
XJ; d

))
be 0 otherwise. Let sna(D̂Jn

(
XJ; d

)
be the nonnegative square root of

s2
na(D̂Jn

(
XJ; d

)
. As the sample size n goes to ∞, ns2

n

(
D̂Jn

(
XJ; d

))
and ns2

na

(
D̂Jn

(
XJ; d

))
both converge with probability

1 to 4σ2(EJ(X; d)). If EJ(X; d) is not equal to DJ(XJ; d) with probability 1, then, as n approaches ∞, the probability
approaches 1 – α that

∣ DJ
(

XJ; d
)
− D̂Jn

(
XJ; d

)
∣≤ zα∕2sn

(
D̂Jn

(
XJ; d

))
,

and the probability approaches 1 – α that

∣ DJ
(

XJ; d
)
− D̂Jn

(
XJ; d

)
∣≤ zα∕2sna

(
D̂Jn

(
XJ; d

))
.

In the nominal case, let all elements of X be positive integers no greater than r, and let EJr(X) be the random variable
with value E(eJr(x, X)) at a J-dimensional vector x if X= x and all elements of x are positive integers no greater than r.
Then n1∕2

[
D̂Jrn

(
XJ
)
− DJr

(
XJ
)]

converges in law to a normal random variable with mean 0 and variance 4σ2(EJr(X)).

Here nσ2
(

D̂Jrn
(

XJ
))

converges to 4σ2(EJr(X)), and for n ≥ 3,

σ2
(

D̂Jrn
(

XJ
))

= 1
n (n − 1)

[
4 (n − 2) σ2 (EJr (X)

)
+ 2σ2 (eJr

(
X1,X2

))]
.

For 1 ≤ i ≤ n, let ÊJrin (X) be the average of eJr(Xi, Xk) for positive integers k ≤ n not equal to i, and let s2
n
(

EJr (X)
)

be

the average of
[

ÊJrin (X) − D̂Jrn
(

XJ
)]2

for 1 ≤ i ≤ n. Let s2
n
(

eJr
(

X1,X2
))

be the average of
[

eJr
(

Xi,Xk
)
− D̂Jrn

(
XJ
)]2

for

1 ≤ k < i ≤ n. For n ≥ 4, an unbiased estimate of σ2
(

D̂Jrn
(

XJ
))

is

s2
n

(
D̂Jrn

(
XJ; d

))
= [(n − 2) (n − 3)]−1 [4 (n − 1) s2

n
(

EJr (X)
)
− 2s2

n
(

eJr
(

X1,X2
))]

.

Let s2
na

(
D̂Jrn

(
XJ
))

= 4s2
n
(

EJr (X)
)
∕n. Let sn

(
D̂Jrn

(
XJ
))

be the positive square root of s2
n

(
D̂Jrn

(
XJ
))

if

s2
n

(
D̂Jrn

(
XJ
))

> 0, and let sn

(
D̂Jrn

(
XJ
))

be 0 otherwise. Let sna(D̂Jrn
(

XJ
)

be the nonnegative square root of

s2
na(D̂Jrn

(
XJ
)

. As the sample size n goes to ∞, ns2
n

(
D̂Jrn

(
XJ
))

and ns2
na

(
D̂Jrn

(
XJ
))

both converge with probabil-
ity 1 to 4σ2(EJr(X)). If EJr(X) is not equal to DJr(X) with probability 1, then, as n approaches ∞, the probability approaches
1 – α that

∣ DJr
(

XJ
)
− D̂Jrn

(
XJ
)
∣≤ zα∕2sn

(
D̂Jrn

(
XJ
))

.

14 ETS Research Report No. RR-19-20. © 2019 Educational Testing Service



S. J. Haberman Agreement Versus Measures of Prediction Accuracy

The probability also approaches 1 – α that

∣ DJr
(

XJ
)
− D̂Jrn

(
XJ
)
∣≤ zα∕2sna

(
D̂Jrn

(
XJ
))

.

The normal approximation for κ̂Jn (X; d) is a bit more complicated because a linearization step is needed and κ̂Jn (X; d)
is not unbiased. For J-dimensional vectors x1 and x2, let

eJκ
(

x1, x2; d
)
=
[
DJJ

(
XJ; d

)]−1
{1

2
[dJ

(
x1
)
+ dJ(x2] − κJ (X; d) eJ(x1, x2); d)

}
.

Let EJκ(X; d) be the random variable with value E(eJκ(x, X; d)) at a J-dimensional vector x if X= x. As n approaches ∞,
n1∕2 [κ̂Jn (X; d) − κJ (X; d)

]
converges in law to a normal random variable with mean 0 and variance 4σ2(EJκ(X; d)). The

asymptotic variance σ2
a
(
κ̂Jn

(
XJ; d

))
= 4σ2 (EJκ (X; d)

)
∕n. No simple formula is available for the variance of κ̂Jn (X; d).

For an asymptotic confidence interval, let

êJκ
(

Xi,Xk; d
)
=
[

D̂Jn
(

XJ; d
)]−1 {1

2
[dJ

(
Xi
)
+ dJ(Xk] − κ̂Jn (X) eJ(Xi,Xk))

}
for distinct positive integers i and k no greater than n. For 1≤ i≤ n, let ÊJκin (X) be the average of êJκr

(
Xi,Xk

)
for positive

integers k≤ n not equal to i. The average of the ÊJκin (X; d), 1≤ i≤ n, is 0. Let s2
na
(
κ̂Jn (X; d)

)
be 4n–2 times the sum of[

ÊJκin (X; d)
]2

for 1≤ i≤ n. As the sample size n goes to ∞, ns2
na
(
κ̂Jn (X; d)

)
converges with probability 1 to 4σ2(EJκ(X;

d)). If EJκ(X; d)) is not 0 with probability 1, then the probability approaches 1 – α that

∣ κJ (X; d) − κ̂Jn (X; d) ∣≤ zα∕2sna
(
κ̂Jn (X; d)

)
.

In the nominal case, let all elements of X be positive integers no greater than r. Let

eJκr
(

x1, x2
)
=
[
DJr

(
XJ; d

)]−1
{1

2
[
dJr

(
x1
)
+ dJr

(
x2
)]

− κJr (X) eJr(x1, x2))
}

for J-dimensional vectors x1 and x2 with all elements positive integers no greater than r. Let EJκr(X) be the random vari-
able with value E(eJκr(x, X)) at a J-dimensional vector x if X= x. As n approaches ∞, n1∕2 [κ̂Jrn (X) − κJr (X)

]
converges

in law to a normal random variable with mean 0 and variance 4σ2(EJκr(X)). The asymptotic variance σ2
na
(
κ̂Jrn

(
XJ
))

=
4σ2 (EJκr (X)

)
∕n.

For distinct positive integers i and k no greater than n, let

êJκrn
(

Xi,Xk; d
)
=
[

D̂Jrn
(

XJ; d
)]−1 {1

2
[
dJr

(
Xi
)
+ dJr

(
Xk

)]
− κ̂Jrn (X) eJr(Xi,Xk))

}
.

For 1 ≤ i ≤ n, let ÊJκrin (X) be the average of êJκr
(

Xi,Xk
)

for positive integers k ≤ n not equal to i. Let s2
na
(
κ̂Jrn (X)

)
be

4n–2 times the sum of
[

ÊJκrin (X)
]2

for 1 ≤ i ≤ n. As the sample size n goes to∞, ns2
na
(
κ̂Jrn (X)

)
converges with probability

1 to 4σ2(EJκr(X)). If EJκr(X) does not equal 0 with probability 1, then the probability approaches 1 – α that

∣ κJr (X) − κ̂Jrn (X) ∣≤ zα∕2sna
(
κ̂Jrn (X)

)
.

Because, except for the nominal case, no assumption has been made that the variables Xj, 1 ≤ j ≤ J, are discrete, these
results generalize very similar results for kappa estimates for the case of all Xj confined to the integers 1 to r (Fleiss et al.,
1969).

Lambda Measures of Agreement

In the case of the lambda measures for agreement, let the Xj, 1 ≤ j ≤ J, be in Lh(d), and assume that no real
x exists such that Xj = x with probability 1 for 1 ≤ j ≤ J. For n ≥ 1, let ĜJn (X; d) be the function on the real
line with value ĜJn (x,X; d) = n−1 ∑n

i=1 ηJ
(

x,Xi; d
)

for real x. Let ĜJn− (X; d) be the infimum of ĜJn (X; d). Let
λ̂Jan (X; d) =

[
ĜJn− (X; d) − D̂J (X; d)

]
∕ĜJn− (X; d). As n approaches ∞, ĜJn− (X; d) converges to GJ−(X; d) with

probability 1, and λ̂Jan (X; d) converges to λJa(X; d) with probability 1 (Haberman, 1989).
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In the nominal case, for n ≥ 1, let ĜJrn (X; d) be the function on Πr with value ĜJrn
(

p,X; d
)
= n−1 ∑n

i=1 ηJr
(

p,Xi; d
)

for p in Πr . Let ĜJrn− (X; d) be the infimum of ĜJrn (X; d). Let λ̂Jarn (X; d) =
[

ĜJrn− (X; d) − D̂Jr (X)
]
∕ĜJrn− (X; d). As n

approaches ∞, ĜJrn− (X; d) converges to GJr−(X; d) with probability 1, and λ̂Jarn (X; d) converges to λJar(X; d) with proba-
bility 1.

For a normal approximation, add the conditions that Xj be in L2h(d) for 1 ≤ i ≤ n and that the set CJ(X; d) of minima

of GJ(X; d) has a single element cJ(X; d), as is always the case if d = q. As n approaches ∞, n1∕2
[

ĜJ− (X; d) − GJ− (X; d)
]

converges in law to a normal distribution with mean 0 and variance σ2(ηJ(cJ(X; d), X; d)). Let

ηJλ (X; d) =
[
GJ− (X; d)

]−1 [dJ (X) − λJa (X; d) ηJ
(

cJ (X; d) ,X; d
)]

.

As n approaches ∞, n1∕2
[̂
λJan (X; d) − λJa (X; d)

]
converges in law to a normal distribution with mean 0 and variance

σ2(ηJλ(X; d)).
In the nominal case, let CJr(X; d) have a single element cJr(X; d), as is always the case if d = q. This situation

also holds for d = a if a y in r exists such that pJy(X)> pJy′(X) for all y′ in r not equal to y. As n approaches ∞,

n1∕2
[

ĜJr− (X; d) − GJr− (X; d)
]

converges in law to a normal distribution with mean 0 and variance σ2(ηJr(cJr(X; d), X;
d)). Let

ηJλr (X; d) =
[
GJr− (X; d)

]−1 [dJr (X) − λJar (X; d) ηJr
(

cJr (X; d) ,X; d
)]

.

As n approaches ∞, n1∕2
[̂
λJar (X; d) − λJar (X; d)

]
converges in law to a normal distribution with mean 0 and variance

σ2(ηJλr(X; d)).
Asymptotic confidence intervals are readily found. Let ĈJn (X; d) be the nonempty closed and bounded interval of

real numbers x such that ĜJn (x,X; d) = ĜJn− (X; d). Let ĉJn (X; d) be the midpoint of ĈJn (X; d). Let s2
na

(
ĜJn− (X; d)

)
be

n–2 times the sum of
[
ηJ

(̂
cJn (X; d) ,Xi; d

)
− ĜJn− (X; d)

]2
for 1 ≤ i ≤ n. As n approaches ∞, ns2

na

(
ĜJn (X; d)

)
converges

to σ2(ηJ(cJ(X; d), X; d)) with probability 1. If ηJ(cJ(X; d), X; d) does not equal GJ−(X; d) with probability 1, then, as n
approaches ∞, the probability approaches 1 – α that

∣ GJ− (X; d) − ĜJn− (X; d) ∣≤ zα∕2sna

(
ĜJn− (X; d)

)
.

Let
η̂Jλn

(
Xi,X; d

)
=
[

ĜJn− (X; d)
]−1 [

dJ
(

Xi
)
− λ̂Jan (X; d) ηJ

(
ĉJn (X; d) ,Xi; d

)]
for 1≤ i≤ n. Let s2

na

(̂
λJan (X; d)

)
be n–2 times the sum of

[
η̂Jλn

(
Xi,X; d

)]2 for 1≤ i≤ n. With probability 1, as n

approaches ∞, ns2
na

(
ĜJn− (X; d)

)
converges to σ2(ηJλ(cJ(X; d), X; d)). If ηJλ(cJ(X; d), X; d)) is not 0 with probability 1,

then, as n approaches ∞, the probability approaches 1 – α that

∣ λJa (X; d) − λ̂Jan (X; d) ∣≤ zα∕2sna

(̂
λJan (X; d)

)
.

In the nominal case, let ĈJrn (X; d) be the nonempty closed and bounded convex set of p in Πr such that
ĜJrn

(
p,X; d

)
= ĜJrn− (X; d). Let ĉJrn (X; d) in ĈJrn (X; d) be a random vector. Let s2

na

(
ĜJrn− (X; d)

)
be n–2 times

the sum of
[
ηJr

(̂
cJrn (X; d) ,Xi; d

)
− ĜJrn− (X; d)

]2
for 1 ≤ i ≤ n. As n approaches ∞, ns2

na

(
ĜJrn (X; d)

)
converges to

σ2(ηJr(cJr(X; d)) with probability 1. If ηJr(cJr(X; d)) does not equal GJr−(X; d) with probability 1, then the probability
approaches 1 – α that

∣ GJr− (X; d) − ĜJrn− (X; d) ∣≤ zα∕2sna

(
ĜJrn− (X; d)

)
.

Let
η̂Jλrn

(
Xi; d

)
=
[

ĜJrn− (X; d)
]−1 [

dJr
(

Xi
)
− λ̂Jarn (X; d) ηJλr

(̂
cJrn (X; d) ,Xi; d

)]
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for 1≤ i≤ n. Let s2
na

(̂
λJarn (X; d)

)
be n – 2 times the sum of

[
η̂Jλrn

(
Xi; d

)]2 for 1≤ i≤ n. As n approaches ∞,

ns2
na

(
ĜJrn (X; d)

)
converges to σ2(ηJr(cJr(X; d)) with probability 1. If ηJλr(cJr(X; d)) does not equal 0 with probability 1,

then, as n approaches ∞, the probability approaches 1 – α that

∣ λJar (X; d) − λ̂Jarn (X; d) ∣≤ zα∕2sna

(̂
λJarn (X; d)

)
.

Measures of Prediction Accuracy

Results for estimation of measures of prediction depend on the set of functions permitted as predictors and on the dis-
tribution of Z. In this problem, mutually independent pairs (Yi, Zi), i ≥ 1, are considered such that each (Yi, Zi) has
the same distribution as (Y , Z). It is assumed that Y is in Lh(d) and no real y exists such that Y = y with probability 1.
It is also assumed that no closed and convex set with empty interior includes Z with probability 1. Let Ĝn (Y ∣ Z; d)
be the nonnegative function on Lh(d)(Z) with value Ĝn

(
f ,Y ∣ Z; d

)
= n−1 ∑n

i=1 d
(

Yi − f
(

Zi
))

at f in Lh(d)(Z), Let
Ĝn− (Y ∣ Z; F, d) ≥ 0 be the infimum of Ĝn (Y ∣ Z; d) on F. Let Ĝn (Y; d) be the real function on the real line with value
Ĝn

(
y,Y; d

)
= n−1 ∑n

i=1 d
(

Yi − y
)

at y real, and let Ĝn− (Y; d) be the infimum of Ĝn (Y; d). Let λ̂n (Y ∣ Z; F, d) ≥ 0 be[
Ĝn− (Y; d) − Ĝn− (Y ∣ Z; F, d)

]
∕Ĝn− (Y; d).

Several cases are straightforward (Haberman, 1989). It is always the case that, as n approaches ∞, Ĝn− (Y; d) converges
with probability 1 to G – (Y ; d). For asymptotic normality, if a unique c(Y ; d) exists such that G(c(Y ; d), Y ; d)= G – (Y ;
d) and Y is in L2h(d), then, as n approaches ∞, n1∕2

[
Ĝn− (Y; d) − G− (Y; d)

]
converges in law to a normal distribution

with mean 0 and variance σ2(d(Y – c(Y ; d))). Consider the nonempty closed bounded interval Ĉn (Y; d) of real c such
that Ĝn (c,Y; d) = Ĝn− (Y; d). Let ĉn (Y; d) be the midpoint of Ĉn (Y; d). Let s2

na

(
Ĝn− (Y; d)

)
be n–2 times the sum of[

d
(

Yi − ĉn (Y; d)
)
− Ĝn− (Y; d)

]2
for 1 ≤ i ≤ n. As n approaches ∞, ns2

na

(
Ĝn− (Y; d)

)
converges to σ2(d(Y – c(Y ; d)))

with probability 1. If Y is not equal to c(Y ; d) with probability 1, then, as n approaches ∞, the probability approaches
1 – α that

∣ G− (Y; d) − Ĝn− (Y; d) ∣≤ zα∕2sna

(
Ĝn− (Y; d)

)
.

If F = Lh(d) (Z) ,  is finite, and P(Z= z)> 0 for all z in , then, as n approaches ∞, Ĝn− (Y ∣ Z; d) =
Ĝn−

(
Y|Z; Lh(d) (Z) , d

)
converges to G−(Y ∣Z; d) with probability 1. In addition, λ̂n (Y ∣ Z; d) = λ̂n

(
Y|Z; Lh(d) (Z) , d

)
converges to λ(Y ∣Z; d) with probability 1. In the case of normal approximations, let Y be in L2h(d) and let c(Y ; d) be the only
member of C(Y ; d). For each z in, let a unique c(Y ∣Z= z; d) exist such that G(c(Y ∣Z= z; d), Y ∣Z= z; d)=G−(Y ∣Z= z;
d). Let c(Y||Z; d) be c(Y ∣Z= z; d) if Z= z in . As n approaches ∞, n1∕2

[
Ĝn− (Y ∣ Z; d) − G− (Y ∣ Z; d)

]
converges in

law to a normal distribution with mean 0 and variance σ2(d(Y − c(Y||Z; d))).
For an asymptotic confidence interval, let n be the set of z in  such that, for some positive integer i ≤ n, Zi = z.

For z in n, let Ĉn (Y ∣ Z = z; d) be the nonempty, bounded, and closed interval of real c such Ĝn (c,Y ∣ Z = z; d) =
Ĝn− (Y ∣ Z = z; d), where Ĝn− (Y ∣ Z = z; d) is the infimum of the real function Ĝn (Y ∣ Z = z; d) with value
for real y of Ĝn

(
y,Y ∣ Z = z; d

)
equal to the average of d(Yi – y) for positive integers i ≤ n such that Zi = z.

Let ĉn (Y ∣ Z = z; d) be the midpoint of Ĉn (Y ∣ Z = z; d). Let s2
na

(
Ĝn− (Y; d)

)
be n–2 times the sum of[

d
(

Yi − ĉn
(

Y|Z = Zi; d
))

− Ĝn−
(

Y|Z = Zi; d
)]2

for 1 ≤ i ≤ n. As n approaches ∞, ns2
na

(
Ĝn− (Y ∣ Z; d)

)
converges to

σ2(d(Y − c(Y ∣Z; d))) with probability 1. If Y is not equal to c(Y||Z; d) with probability 1, then, as n approaches ∞, the
probability approaches 1 – α that

∣ G− (Y ∣ Z; d) − Ĝn− (Y ∣ Z; d) ∣≤ zα∕2sna

(
Ĝn− (Y ∣ Z; d)

)
.

In the case of λ(Y ∣Z; d), let

ηλ (Y ∣ Z; d) =
[
G− (Y; d)

]−1 [d (Y − c (Y; d)) − λ (Y ∣ Z; d) d (Y − c (Y||Z; d))
]
.

As n approaches ∞, n1∕2
[̂
λn (Y ∣ Z; d) − λ (Y ∣ Z; d)

]
converges in law to a normal random variable with mean 0 and

variance σ2(ηλ(Y ∣Z; d)).
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If
η̂λin (Y ∣ Z; d) =

[
Ĝn− (Y; d)

]−1 [
d
(

Yi − ĉn (Y; d)
)
− λ̂n (Y ∣ Z; d) d

(
Yi − ĉn

(
Y|Z = Zi; d

))]
and s2

na

(̂
λn (Y ∣ Z; d)

)
is n−2 times the sum of

[
η̂λin (Y ∣ Z; d)

]2 for 1≤ i≤ n, then, as n approaches∞, ns2
na

(̂
λn (Y ∣ Z; d)

)
converges to σ2(η(Y ∣Z; d)) with probability 1. If d(Y – c(Y)) does not equal λ(Y ∣Z; d)d(Y − c(Y||Z; d)) with probability
1, then, as n approaches ∞, the probability approaches 1 – α that

∣ λ (Y ∣ Z; d) − λ̂n (Y ∣ Z; d) ∣≤ zα∕2sna

(̂
λn (Y ∣ Z; d)

)
.

The case of F =A(Z) for Zk in Lh(d) for 1 ≤ k ≤ K is relatively straightforward, even without any assump-
tion that  is finite. As n approaches ∞, Ĝn (Y|Z;A (Z) , d) converges to G(Y| Z; A(Z), d) with probability 1, and
λ̂n (Y|Z;A (Z) , d) converges to λ(Y| X; A(Z), d) with probability 1. If a unique f in A(Z) exists such that G(f , Y ∣Z;
d)=G−(Y| Z; A(Z), d) and Y and Zk, 1 ≤ k ≤ K, are in L2h(d), then a normal approximation is available. As n
approaches ∞, n1∕2

[
Ĝn− (Y|Z;A (Z) , d) − G (Y|Z;A (Z) ; d)

]
converges in law to a normal distribution with mean

0 and variance σ2(d(Y − f (Z))). In addition, if c(Y ; d) is the only element of C(Y ; d), then, as n approaches ∞,
n1∕2

[̂
λn (Y|Z;A (Z) , d) − λ (Y|Z;A (Z) , d)

]
converges in law to a normal distribution with mean 0 and variance

σ2(ηλ(Y| Z; A(Z), d)), where

ηλ (Y|Z;A (Z) , d) =
[
G− (Y; d)

]−1 [d (Y − c (Y; d)) − λ (Y|Z;A (Z) ; d) d
(

Y − f (Z)
)]

.

For an asymptotic confidence interval, let F̂n (Y|Z;A (Z) , d) be the set of f in A(Z) such that Ĝn
(

f ,Y ∣ Z; d
)
=

Ĝn−
(

f ,Y ∣ Z;A (Z) , d
)

. Let f̂n in F̂n (Y|Z;A (Z) , d)) be defined so that f̂n
(

Zi
)

is a random vector for 1 ≤ i ≤ n. Let

s2
na

(
Ĝn− (Y|Z;A (Z) , d)

)
be n–2 times the sum of

[
d
(

Y − f̂n
(

Zi
))

− Ĝn− (Y ∣ Z; d)
]2

for 1 ≤ i ≤ n. As n approaches ∞,

ns2
na

(
Ĝn− (Y|Z;A (Z) , d)

)
converges to σ2(d(Y − f (Z))) with probability 1. If d(Y − f (Z)) does not equal G−(Y ∣Z; d)

with probability 1, then, as n approaches ∞, the probability approaches 1 – α that

∣ G− (Y|Z;A (Z) , d) − Ĝn− (Y|Z;A (Z) , d) ∣≤ zα∕2sna

(
Ĝn− (Y|Z;A (Z) , d)

)
.

If
η̂λin (Y|Z;A (Z) , d) =

[
Ĝn− (Y; d)

]−1 [
d
(

Yi − ĉn (Y; d)
)
− λ̂n (Y|Z;A (Z) , d) d

(
Yi − f̂n

(
Zi
)))

]

and s2
na

(̂
λn (Y ∣ Z; d)

)
is n–2 times the sum of

[
η̂λin (Y|Z;A (Z) , d)

]2 for 1 ≤ i ≤ n, then, as n approaches ∞,

ns2
na

(̂
λn (Y|Z;A (Z) , d)

)
converges to σ2(ηλ(Y| Z; A(Z), d)) with probability 1. If ηλ(Y ∣Z; A(Z; d) is not 0 with

probability 1, then, as n approaches ∞, the probability approaches 1 – α that

∣ λ (Y|Z;A (Z) , d) − λ̂n (Y|Z;A (Z) , d) ∣≤ zα∕2sna

(̂
λn (Y|Z;A (Z) , d)

)
.

For the case of probability prediction, let Y always be in r. Let Ĝrn (Y ∣ Z; d) be the nonnegative function on Br(Z)
with value Ĝrn (f ,Y ∣ Z; d) = n−1 ∑n

i=1 ηr
(

f
(

Zi
)
,Yi; d

)
at f in Br(Z). Let Ĝrn−

(
Y|Z; Fr, d

)
≥ 0 be the infimum of

Ĝnr (Y ∣ Z; d) on Fr . Let Ĝrn (Y; d) be the real function on Πr with value Ĝrn
(

y,Y; d
)
= n−1 ∑n

i=1 ηr
(

p,Yi; d
)

at p in Πr ,
and let Ĝrn− (Y; d) be the infimum of Ĝrn (Y; d). Let λ̂rn

(
Y|Z; Fr, d

)
≥ 0 be

[
Ĝrn− (Y; d) − Ĝrn−

(
Y|Z; Fr, d

)]
∕Ĝrn− (Y; d).

Let Ĝrn− (Y ∣ Z; d) = Ĝrn−
(

Y|Z;Br (Z) , d
)

and λ̂rn− (Y ∣ Z; d) = λ̂rn−
(

Y|Z;Br (Z) , d
)

.
It is always the case that Ĝrn− (Y; d) converges with probability 1 to Gr – (Y ; d). If Cr(Y ; d) contains one element pr(Y ;

d), then, as n approaches ∞, n1∕2
[

Ĝrn− (Y; d) − Gr− (Y; d)
]

converges in law to a normal distribution with mean 0 and
variance σ2(ηr(pr(Y ; d), Y ; d)).

An asymptotic confidence interval is also available. Consider the nonempty closed convex set P̂rn (Y; d) of p in Πr

such that Ĝrn
(

p,Y; d
)
= Ĝrn− (Y; d). Let p̂n (Y; d) be a random vector with values in P̂rn (Y; d). Let s2

na

(
Ĝrn− (Y; d)

)
be n–2 times the sum of for 1 ≤ i ≤ n. Then ns2

na

(
Ĝrn− (Y; d)

)
converges to σ2(ηr(pr(Y ; d), Y ; d)) with probability 1.
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If ηr(pr(Y ; d), Y ; d) is not equal to Gr – (Y ; d) with probability 1, then, as n approaches ∞, the probability approaches
1 – α that

∣ Gr− (Y; d) − Ĝrn− (Y; d) ∣≤ zα∕2sna

(
Ĝrn− (Y; d)

)
.

If  is finite and Z= z with positive probability for each z in , then Ĝrn− (Y ∣ Z; d) converges to Gr−(Y ∣Z; d) with
probability 1 and λ̂rn− (Y ∣ Z; d) converges to λr(Y ∣Z; d) with probability 1 as n approaches 1. For a normal approximation,
let pr(Y ; d) be the only member of Cr(Y ; d), and, for z in , let pr(Y ∣Z= z; d) be the unique member of Cr(Y ∣Z= z; d).
Let pr(Y||Z; d) be pr(Y ∣Z= z; d) if Z= z. As n approaches ∞,

n1∕2
[

Ĝrn− (Y ∣ Z; d) − Gr (Y ∣ Z; d)
]

converges in law to a normal distribution with mean 0 and variance σ2(ηr(pr(Y||Z; d), Y ; d)). Let

ηλr (Y ∣ Z; d) =
[
Gr− (Y; d)

]−1 [ηr
(

pr (Y; d) ,Y; d
)
− λr (Y ∣ Z; d) ηr

(
pr (Y ∣ Z,Y; d)

)]
.

Then n1∕2
[̂
λrn (Y ∣ Z; d) − λr (Y ∣ Z; d)

]
converges in law to a normal random variable with mean 0 and variance

σ2(ηλr(Y ∣Z; d)).
For an asymptotic confidence interval, for z in n, let P̂rn (Y ∣ Z = z; d) be the nonempty, bounded, and closed convex

set of p in Πr such Ĝrn
(

p,Y ∣ Z = z; d
)
= Ĝrn− (Y ∣ Z = z; d), where Ĝrn− (Y ∣ Z = z; d) is the infimum of the real func-

tion Ĝrn (Y ∣ Z = z; d)with value for p inΠr of Ĝrn
(

p,Y ∣ Z = z; d
)

equal to the average of ηr(p, Yi; d) for positive integers
i ≤ n such that Zi = z. Let p̂rn (Y ∣ Z = z; d) in P̂rn (Y ∣ Z = z; d) be defined so that p̂rn

(
Y|Zi; d

)
is a random vector for each

positive integer i ≤ n. Let s2
rna

(
Ĝrn− (Y; d)

)
be n–2 times the sum of

[
ηr

(
p̂rn

(
Y|Zi; d

)
,Yi; d

)
− Ĝrn−

(
Y|Z = Zi; d

)]2
for

1 ≤ i ≤ n. As n approaches ∞, ns2
na

(
Ĝrn− (Y ∣ Z; d)

)
converges to σ2(ηr(pr(Y||Z; d))) with probability 1. If Y is not equal

to c(Y||Z; d) with probability 1, then, as n approaches ∞, the probability approaches 1 – α that

∣ G− (Y ∣ Z; d) − Ĝn− (Y ∣ Z; d) ∣≤ zα∕2sna

(
Ĝn− (Y ∣ Z; d)

)
.

If

η̂λrin (Y ∣ Z; d) =
[

Ĝrn− (Y; d)
]−1 [

ηr

(
p̂rn (Y; d) − λ̂rn (Y ∣ Z; d) ηr

(
p̂rn

(
Z = Zi; d

)
,Y; d

))]
and s2

na

(̂
λrn (Y ∣ Z; d)

)
is n−2 times the sum of

[
η̂λrin (Y ∣ Z; d)

]2 for 1 ≤ i ≤ n, then, as n approaches ∞,

ns2
na

(̂
λrn (Y ∣ Z; d)

)
converges to σ2(ηλr(Y ∣Z; d)) with probability 1. If ηλr(Y ∣Z; d) is not 0 with probability 1,

then, as n approaches ∞, the probability approaches 1 – α that

∣ λr (Y ∣ Z; d) − λ̂n (Y ∣ Z; d) ∣≤ zα∕2sna

(̂
λrn (Y ∣ Z; d)

)
.

The case of Fr =Br(h, Z) based on the H-dimensional function h on such that h(Z) is a random vector involves no spe-
cial considerations. Here Ĝrn−

(
Y ∣ Z;Br (h,Z) , d

)
= Ĝrn− (Y|h (Z) ; d) and λ̂rn

(
Y ∣ Z;Br (h,Z) , d

)
= λ̂rn (Y|h (Z) , d).

Concluding Remarks

Measures discussed in this report apply both to discrete and continuous variables, except that the case of nominal pre-
dicted variables requires supplementary treatment. This observation appears not to be widely recognized for measures
of agreement, so that many statistical packages only treat measures of agreement for random variables with integer values.
Given that quadratic discrepancy generally has more attractive properties than alternatives and is tied to the familiar con-
cepts of variance, correlation, and the coefficient of determination, it appears that this measure should be given preference
without compelling reason to act differently.

Without strong reasons to act otherwise, proportional reduction in error should receive emphasis in reporting.
Although kappa measures are traditional and do provide proportional reduction in error, it is fair to ask whether lambda
measures of agreement provide a better understanding of poor agreement.
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Although results have been provided for agreement and prediction of nominal variables, it is fair to consider how often
these measures are really appropriate when the variable assumes more than two values. The issue is how often values of a
nominal variable can be regarded as equally distant from each other.

One further matter should be noted in the case of probability prediction. The approach here emphasizes discrepancy
measures d that are suitable both for measures of agreement and for measures of prediction. For probability prediction,
there is a long tradition of using the log penalty function in which a penalty of – log pY is recorded if Y occurs and
the predicted probability vector p in Πr has elements py for y in r. This option has an extensive literature of its own
(Goodman & Kruskal, 1959; Haberman, 1982a, 1989), among numerous other references. The log penalty is closely linked
to maximum likelihood, so estimation is generally quite efficient, especially for families of functions based on multinomial
logits (Haberman, 1982a).
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